超级奥氏体不锈钢的发展以日益增长的物质需求为基础,以工业技术的进步为动力,以优异的耐腐蚀性能为目标,历经数十年的发展,以满足适用于苛刻环境的要求。但是随着时代的发展与技术的进步,工业化进程加快,超级奥氏体不锈钢使用范围越来越广,使用环境越来越苛刻,因此研究其发展过程及技术进展对开发更高耐腐蚀性能的超级奥氏体不锈钢有着重要的作用和意义。
在20世纪50年代,瑞典Avesta公司通过提高Mo含量研发出成分为16.5Cr-30Ni-6Mo的钢种,其是254 SMO(S31254,20Cr-18Ni-6Mo-0.2N)的雏形。
在20世纪60年代,欧洲Ugine公司研制出抗海水腐蚀的NSCD合金,其Mo质量分数大于5%。超级奥氏体不锈钢的研发就此迈进了一步。
20世纪90年代,日本Yakin公司以254 SMO为基础,进行适当的提Cr降Mo以及优化其他元素含量,研发出NAS 254N(S32053,23Cr-25Ni-5Mo-0.2N),不仅确保了超级奥氏体不锈钢的耐腐蚀性能,而且还降低了金属间化合物析出的风险。NAS 254N现被广泛使用在海洋工程、化学工业、制浆造纸及污染防治等系统中。
对于超级奥氏体不锈钢的重要冶金技术主要有两种:炉外精炼技术(主要是真空吹氧脱碳法VOD和氩氧脱碳法AOD)和氮合金化技术。
超级奥氏体不锈钢中的Cr含量普遍较高,根据含Cr钢水的冶金物理化学反应可知C的含量就此升高。C虽然是强烈形成并稳定奥氏体区的元素,但C易与合金元素形成碳化物(M23C6、M6C、MC以及M7C3),造成局部贫Cr,对不锈钢的耐腐蚀性能尤其是耐晶间腐蚀与点腐蚀性能影响较大,因此需要把C的质量分数降到0.02%以下。为了使C含量降低,可以提高冶炼温度,也可以降低CO分压,专家学者以此通过研究开发出炉外精炼技术。
炉外精炼技术推动了超级奥氏体不锈钢第二、三阶段的发展,它是设置在转炉和连续铸钢间的连接工序,可提高并完善亨利贝塞麦发明的液态炼钢法,有效提升冶炼精度与效率,并且具有改变冶金反应条件、增加钢渣的反应面积与提升熔池传质速度等优势。
炉外真空精炼的先驱是1952年西德克虏伯建成的钢流脱气(SD)处理设备,可脱H,但脱O效果差,之后随着大型蒸汽喷射泵技术的日益成熟,各种形式的钢液真空脱气技术迅速发展。
1956年前西德的Dortmund Horder Huttenunion公司开发了真空提升脱气法(DH),1958年前西德的Rhein Stahl Hutten Werke和Heraeus公司开发出真空循环脱气法(RH),两者脱H、O、C、N元素效果较好,但炉衬寿命降低。为了达到多功能的精炼目的,1964年瑞典ASEA和SKF公司研发出一种真空脱气法,称为ASEA-SKF,可进行吹O脱C,精炼超低C不锈钢,其是炉外精炼的最初模型。
1964年美国Union Carbide Corp发明了氩氧脱碳法(AOD),通过吹入惰性气体降低CO分压从而达到去C保Cr的目的。1967年在美国Joslyn不锈钢厂建成并投产了第一台AOD炉,使不锈钢的生产能力得到了质的提高,能在抑制有害微量元素的同时又精确控制合金元素,为制造更高合金化的不锈钢打下了基础。
1972年法国Creusot Loire和瑞典Uddeholm公司共同在AOD的基础上发展了蒸汽-氧吹炼法(CLU),1973年在Degerfors进行正式生产,证实CLU可提高炉衬寿命,但与AOD相比Cr被氧化得更多。
1965年前西德Edel-stahlwerk witten发明真空吹氧脱碳法(VOD),通过抽真空降低CO分压,达到去C保Cr的目的,可以冶炼超低碳、高难度、高纯度的不锈钢产品。在VOD基础上相关技术又进一步发展,如1976年美国FinkL-Mohr研发的KVOD/VAD,具有VOD与AOD的优点,但又比AOD节约氩气与耐火材料,比VOD脱C快;1976年日本川崎研发的SS-VOD加强了氩气搅拌,可将C与N降得更低;1976年前西德Edel-stahlwerk witten研发了VODC/VODK,该方法Cr回收率高;并且1967年美国FinkL&Sons改进了ASEA-SKF研发出FinkL-VAD,增加了减压下电弧加热,可在高温下实现高铬钢液去C保Cr,但冶炼不锈钢成本高。1970年日本新日铁利用与VOD相同的原理,在RH设备上加上一根吹氧喷枪研发出真空循环吹氧脱碳法(RH-OB)。
另外,1971年日本大同特殊钢研发了钢包精炼法(LF),具有电弧加热、吹氩搅拌、真空脱气等功能,该法设备简单、费用低廉,特别适用于旧设备的更新改造。1980年日本大同特殊钢开发气体精炼电弧炉法(GRAF),使用惰性气体代替真空,可更快地脱H、O、N、S等。
超级奥氏体不锈钢历经三代发展,体系逐渐成熟,拥有优异的耐腐蚀性能、良好的力学性能以及适中的价格优势,使其应用范围逐渐扩大。但随着工业化的进步,介质环境日渐苛刻,促使超级奥氏体不锈钢的进一步研发。
第一个研发思路是沿用前期的高Mo思路,如1997年日本Yakin以NAS 254N为基础,提高Mo的质量分数至7.5%,为保证奥氏体相将Ni质量分数提高至35%而研发出NAS 354N(23Cr-35Ni-7.5Mo-0.2N),不仅提高了耐点腐蚀性能及缝隙腐蚀性能,还因Ni含量的提高而提高了耐应力腐蚀性能,并降低了第二相析出的风险。此钢种在石油化工、海洋工程、食品制药及电子工程等行业广泛应用。2020年在NAS 354N的基础上添加3.2%Cu,研发出的NAS 355N(23Cr-35Ni-7.5Mo-0.2N-3.2Cu),在保证其耐氯离子介质腐蚀的同时提高了耐硫酸介质环境的腐蚀,尤其适用于硫酸和高氯化物介质同时存在的环境,如烟气脱硫设备、化工设备以及热交换器等环境。
第二个思路是增加Cr含量,如为了解决奥氏体不锈钢在极端条件下易腐蚀的问题,2020年Sandvik研发出sanicro35(N08935,27Cr-35Ni-6.5Mo-0.3N),它是专为腐蚀性环境和海水应用而设计的新钢种,不易形成金属间相,提高了焊接性和整体的可生产性,可用于生产液压和仪器仪表、热交换器以及海洋工程、石油和天然气等苛刻环境中的管道。
超级奥氏体不锈钢已经在烟气脱硫、纸浆造纸、石油化工、海水淡化等工艺使用中逐渐成熟,随着工业的发展、技术的进步,以及国家战略发展需求,发展海洋油气产业是中国未来建设海洋强国的重要战略,也是建设能源强国的战略需求。但与陆地油气开采相比,海水流动剧烈、海温和压力随深度变化大、海底岩层结构与陆地井迥异,海底微生物种类复杂,且海洋油气中H2S、CO2和Cl-等含量普遍较高,存在固液气三相腐蚀。
为了适应复杂的海洋环境,避免海洋工程装备及设备遭受严重的侵蚀,1975-1980年,荷兰NAM公司安装7条内部为316L不锈钢和4条内部为双相不锈钢的外输管线(全长13.3 km)替代碳钢和缓蚀剂组成的外输管线。然而,在卡塔尔海域使用316L发生了严重的点蚀和缝隙腐蚀,2008年飓风袭击美国墨西哥湾期间,304L管道、闸门和泵等遭海啸带来海浪的掩埋,1个月后发生点腐蚀。2013年8月南通太平洋海洋工程有限公司的液化石油气运输船仅半年就出现304管道严重点蚀。为防止泄漏的发生,海洋工程需要更高耐蚀性能、更高强度、高韧度的不锈钢。超级奥氏体不锈钢不仅具有良好的耐腐蚀性能,且随着N添加量的增加,超级奥氏体不锈钢的强度得到提高,延展性也得到改善,因此现在被广泛应用于海洋工程领域中。
1986-1989年,挪威国家石油公司(Statoil)在Gullfaks平台使用约475吨的AL-6XN,挪威Conoco Heidrun平台使用超过600吨的AL-6XN。1995-2010年,波斯湾Al Shaheen海上油田使用408吨的254 SMO的管道。1995年,瑞典Forsmark 1和2使用近94000米的654 SMO冷凝器代替钛管;1995-1996年,瑞典Ringhals使用56000米和1996-1977年芬兰TVO使用58000米的654 SMO冷凝器管;荷兰AVR Demi使用140万米的S34565薄壁冷凝管。挪威国家石油公司Aasgard和Kristin海上项目使用超过500吨的S34565。Snorre油田使用Cronifer 1925hMo合金无缝管、焊接管以及其他管道系统,用于输送纯海水、输送和处理含硫化氢的碳氢化合物和海水混合物。1990年日本Yakin在一个液化石油气运输码头的钢管柱上部使用S32053包覆层,29年后此部位未发生腐蚀。日本东京羽田机场跑道的1201支钢管桩使用254 SMO的包覆保护皮用于潮差区,包覆保护皮厚0.4 mm,包覆面积69000 m2,共250吨。虽然6Mo钢使用较多,但相关实际应用发现254 SMO在35 ℃以上的Cl-环境中会发生缝隙腐蚀,并且在北海一个平台上的原油冷却器冷却水出口,当温度高于70 ℃时,254 SMO的法兰和螺纹喷嘴上有缝隙严重腐蚀。
石油和天然气的勘探正在转向更深的储层,特别是深水领域。越来越多的场合会遇到温度高达260 ℃,压力高达172 MPa,H2S、CO2、Cl-以及游离S含量高的情况,这不仅会导致一般腐蚀,还会导致硫化物和氯化物或它们共同作用的应力腐蚀开裂。此外,储层越深,温度越高,由于高温下材料要承受更大的悬挂载荷和压力,因此对材料力学性能的要求也就越高。这表明所使用的材料需同时满足以下几方面的要求:较优的机械性能与耐均匀腐蚀性能、耐点蚀和缝隙腐蚀性能、抗氯化物应力腐蚀开裂性能以及抗硫化物应力腐蚀开裂性能,材料的开发还需具有成本效益。基于此需求,超级奥氏体不锈钢因具有良好的耐腐蚀性能、优异的强度、相对便宜的价格等优势,可广泛应用于深海油气开采产业,未来针对使用环境的需求还可进一步优化和提升材料性能。
随着工业化技术的进步,未来超级奥氏体不锈钢的应用环境越来越严苛,材料发展仍以追求卓越耐蚀性为主,仍然需要通过提高Cr、Mo、N元素的含量来实现,同时需兼顾相平衡及经济性。
免责声明:本网站所转载的文字、图片与视频资料版权归原创作者所有,如果涉及侵权,请第一时间联系本网删除。
官方微信
《腐蚀与防护网电子期刊》征订启事
- 投稿联系:编辑部
- 电话:010-62316606
- 邮箱:fsfhzy666@163.com
- 腐蚀与防护网官方QQ群:140808414