层状双金属氢氧化物 (LDH),又名水滑石,是由带正电荷的主体层板和层间阴离子通过非共价键的相互作用组装而成的层状结构化合物,其化学组成可以表示为[M 2+1-xMx3+(OH)2] x+(A n-) x/n ·mH2O,其中M 2+和M 3+分别代表二价和三价金属离子 (一价的金属阳离子Li+也可以与Al3+形成LDH)[1],A n-为层间阴离子。M 2+离子有Mg2+、Zn2+、Ni2+、Cu2+、Mn2+等,M 3+离子有Al3+、Cr3+、Fe3+、In3+等,层间阴离子有CO32-、NO3-、Cl-等。LDH具有层板化学组分可调控以及层间阴离子易交换等特点,可以作为催化剂、药物以及缓蚀剂的载体,因此多年来一直是大家的研究热点之一。在金属腐蚀与防护领域,由于LDH具有优异的屏蔽性能和离子交换性能,因此非常适合于在镁合金表面制备具有物理隔绝和自愈性能的LDH涂层。本文主要从镁合金表面缓蚀剂插层LDH涂层的制备和自愈性能评价两个方面近几年来的研究进展进行综述,并针对目前研究和应用中存在的问题进行了展望。
1 LDH在镁合金腐蚀防护方面的应用
Mg及镁合金有着广泛的应用前景,但其较差的耐蚀性严重限制了大规模应用,因此国内外学者对镁合金的腐蚀防护技术开展了许多研究工作,如采用钝化、氧化 (含微弧氧化)、化学转化、离子注入、阴极电沉积、有机涂层等可以有效控制镁合金的腐蚀[2],其中在镁合金表面制备LDH化学转化涂层,具有易于操作、成本低、环保、与基体良好的结合力以及能有效防止镁合金基体的腐蚀等特点而引起了广泛的关注[3-5]。
1.1 缓蚀剂插层的LDH
通过共沉淀、水热、离子交换、电沉积、煅烧水化等原位或者非原位的办法在镁合金表面形成不同M2+和M3+多种二元组合的LDH涂层,如Mg-Al[6]、Zn-Al[7]、Cr-Al[8]和Fe-Al[8]等,同时将LDH层间阴离子如CO32-、NO3-等与一些具有缓蚀性的无机阴离子如磷酸盐[9]、钒酸盐[10]、钼酸盐[11]、钨酸盐[12]或者有机的缓蚀阴离子如8-羟基喹啉[13-15]、天冬氨酸[1,16]、苯膦酸[17]、植酸[18]、棕榈酸[19]、噻吩衍生物 (NTA)[20]、巯基苯并噻唑 (MBT)[21]等进行交换,可以进一步提高LDH涂层的屏蔽性能和防护效果。
LDH涂层对镁合金基体的保护机制一般认为是LDH层间的缓蚀剂离子与进入到涂层内部的氯离子发生了离子交换,降低了侵蚀性Cl-的浓度,同时释放出的缓蚀剂离子对基体也有保护作用,这两方面的综合作用使得LDH涂层对基体产生了很好的保护效果。另外,镁合金表面上形成的LDH形态一般呈现刀片状,有较多的孔洞;使用天冬氨酸、植酸等缓蚀剂插层后LDH的形态会发生变化,为花状或玫瑰花状,孔洞数目减少,因此对基体的保护作用加强。此外,制备LDH时的水热时间对形态也有影响。Chen等[22]在AZ31镁合金表面制备天冬氨酸插层的MgAl-LDH时,水热时间12 h时形似玫瑰花的LDH平铺在合金表面,耐蚀效果最好;15 h时,这种形态的LDH消失,耐蚀效果下降。
1.2 LDH的封闭处理
单一LDH涂层对基体的保护作用有限,因此许多学者使用低表面能物质对LDH 涂层进行修饰或使用SiO2等对LDH进行封闭以进一步提高对镁合金基体的保护效果,Chen等[18]采用植酸对AZ31镁合金表面上Mg-Al LDH处理后,能得到防蚀效果更好的涂层;Zhou等[23]在AZ91D镁合金表面首先原位制备了一层纳-微结构膜 (纳米棒状ZnO/微米LDH),用硬脂酸封闭后,接触角高达165.6o,在3.5% (质量分数) NaCl溶液中腐蚀电流密度为2.6×10-5 A/cm2;Zhang等[24]在AZ31镁合金表面制备了用硬脂酸封闭的Mg(OH)2/Mg-Al LDH膜,接触角为153.5o,腐蚀电流密度低至3.4×10-10 A/cm2;Zhang等[25]用硬脂酸对Mg-Li-Ca合金表面的微弧氧化膜进行封闭,接触角为146.5o,腐蚀速率从MAO处理的4.23×10-5 A/cm2降到5.36×10-8 A/cm2。Ba等[26]在AZ91D镁合金基体上制备了Mg-Al LDH,然后在不同浓度的硝酸铈溶液中浸泡,同时施加交流电促进Ce离子的迁移,耐蚀性提高了10倍左右;Zeng等[27]使用聚乳酸对Zn-Al LDH进行封闭处理,腐蚀电流密度从6.78×10-8 A/cm2降到了1.20×10-8 A/cm2;Peng等[28]在AZ31镁合金微弧氧化膜层使用Mg-Al LDH进行了封闭处理,腐蚀速率下降了一个数量级;Zhang等[29]对AZ31镁合金实施了4步表面处理,如先微弧氧化,再在硝酸铈+双氧水溶液中浸泡形成化学转化膜,然后利用水热法制备Mg-Al LDH,最后在植酸溶液中浸泡,经过这一系列处理后,镁合金在3.5%NaCl溶液中的腐蚀电流密度降到5×10-8 A/cm2;后来简化了步骤[30],先对AZ31镁合金阳极氧化,然后采用两步法在AZ31镁合金表面制备了掺杂钒酸根离子的Mg-Al-Ce LDH膜层,在3.5%NaCl溶液中浸泡1和14 d后的腐蚀电流密度分别为2.2×10-7和6.7×10-7 A/cm2,表现出长时间的保护效果。Hao等[31]通过在LDH沉积SiO2溶胶,提高了复合膜的阻隔性能;Zhang等[32]和Yan等[33]在LDH上使用石墨烯进行封闭处理,也提高了耐蚀性。
1.3 含Ce的LDH
稀土元素Ce对镁/铝合金的腐蚀具有较好的抑制效果,因此有学者在镁合金表面上制备了一层由Mg2+或Zn2+、Al3+和掺杂Ce的三元LDH涂层,Wu等[30]在AZ31镁合金表面制备了Mg-Al-Ce LDH涂层,在3.5%NaCl溶液中,腐蚀电流密度为3.6×10-7 A/cm2;Zhang等[34]在铝合金表面原位生长出了Zn-Al-Ce LDHs,耐蚀效果也较好。本课题组使用Mg2+与Al3+、Ce3+合成了三元LDHs,腐蚀电流密度为5.12×10-8 A/cm2,防护效果显著好于前人工作[35];在此基础上,又在镁合金表面制备了Zn-Ce LDH涂层,表明在pH≈11及Zn/Ce摩尔比等于3时,能够形成一层致密、附着力好的涂层,在3.5%NaCl溶液中腐蚀电流密度为3.3×10-8 A/cm2,这个电流密度是目前除了水蒸气制备法外已报道的最低的腐蚀电流密度之一[36]。如能将缓蚀剂进行插层,有可能进一步提高其保护效果。
2 LDH涂层自愈性能的评价
缓蚀剂插层的LDH涂层备受关注的另一个重要原因是其具有自愈效果。当涂层有缺陷或者遭到划伤破坏后,腐蚀溶液中的Cl-等侵蚀性离子进入LDH涂层内,与LDH层间的缓蚀性阴离子发生交换作用,层间阴离子释放出来,起到自愈效果。自愈机理根据层间插入的离子的不同大概可以分为以下两种:(1) 钝化作用:如LDH层间的六价铬酸盐离子,被交换出来后,在缺陷处形成一层Cr(OH)3/Cr2O3钝化膜,从而起到修复作用[37]。钒酸盐的作用与此类似。由于铬酸盐和钒酸盐有毒,因此有学者使用毒性较低的三价铬[38];(2) 螯合作用:层间插入的钼酸盐[39]、磷酸盐[40]、四苯基卟啉[41]、8-羟基喹啉等可以和Mg2+螯合,生成沉淀物,封闭腐蚀通道,起到自愈功能;然而LDH中若多种缓蚀剂同时存在时的自愈机理还未被深入研究。
评价镁合金表面防护涂层的自愈性能,主要用到了以下方法:(1) 人为划伤后的涂层,在腐蚀溶液中浸泡一段时间后取出,用光学显微镜观察划痕处的涂层修复情况,结合扫描电镜观察和元素分析,可进行机理的研究。Zhao等[42]使用spin-spray layer-by-layer (SSLBL) 层层组装技术在镁合金表面制备了多层含有CeO2和SiO2的涂层,划伤的涂层在3.5%NaCl溶液中浸泡72 h后,没有明显的破坏;(2) 电化学技术能得到更详细的涂层自愈信息,常规的有动电位极化 (PDP) 和电化学阻抗谱 (EIS),Zeng等[39]使用动电位扫描研究表明表面有一层LDH-MO42-涂层的镁合金,在阳极极化曲线上出现了多个钝化区,作者认为这是由于该涂层具有自愈能力引起的。Gnedenkov等[43]先对镁合金试样进行阳极极化,然后再用EIS评价涂层的自愈能力。由于PDP和EIS 测量的是整个电极/电解液界面的平均响应信号,不能获得局部电化学信息,因此微区电化学测试技术如扫描振动电极技术 (SVET)、局部电化学阻抗技术 (LEIS) 、扫描电化学显微镜 (SECM)、扫描离子选择电极技术 (SIET)、扫描开尔文探针 (SKP) 等在涂层自愈性能方面也有较多的应用,Zhang等[29]使用SVET研究了多层膜的自愈能力;Jamali等[44]使用SECM证明镁合金表面稀土元素Pr的转化膜有自修复作用;Calado等[45]使用了EIS、SVET和LEIS等多种技术研究了负载纳米CeO2颗粒的硅烷膜涂层对镁合金基体的保护作用,表明CeO2的加入能降低阴极反应活性,且能主动对涂层缺陷进行修复。Ding等[46]采用划伤、SVET技术研究了镁合金表面LDH涂层及超疏水涂层的自愈性能,结果表明,LDH经超疏水处理后,具有更好、更快的自愈能力。
以上这些微区电化学仪器有助于深入了解膜层的自愈机理,但是这些仪器通常较为昂贵,且重现性往往受多种因素的影响,因此如能辅助其他一些能够进行电化学原位监测手段,将更有助于深入了解涂层的自愈过程和机理。
涂层的破坏和自愈过程中,会伴随着开路电位波动等电化学参数的变化,这些信号比较容易获取,而且具有原位、快速和直观等特点,如碳钢和不锈钢的亚稳态点蚀发生和发展过程中,开路电位的变化特点与钝化膜的破坏与修复有着密切关系。我们在最近研究镁合金LDH涂层在3.5%NaCl溶液中腐蚀失效行为时,也观察到类似的现象。除了开路电位外,本课题组[47]还研究表明单频电化学阻抗谱 (EIS) 是原位监测涂层破坏与自愈过程的一种很好的方法。单频电化学阻抗谱是在低频下 (如0.1 Hz或1 Hz) 测试得到的涂层阻抗,它可以代表涂层的防护性能。Anjum等[47]在AZ31镁合金基体上,分别制备了Mg-Al LDH涂层和插入8-羟基喹啉 (8Q) 的Mg-Al LDH涂层,将涂层人为划伤后,在3.5%NaCl溶液中测试了低频阻抗随浸泡时间的变化,Mg-Al LDH涂层浸泡10 h后失去了自修复作用,而且涂层的阻抗也不高;Mg-Al-8HQ LDH涂层在浸泡220 h后,仍有很好的自修复作用。因此,这类无损、原位、实时监测技术将有助于深入了解LDH涂层在腐蚀溶液中的失效与自愈过程。
3 展望
虽然对LDH的研究较多,但还存在LDH的形成机制和对基体的保护机理不甚清楚等问题,具体有以下几个方面:
对镁合金表面LDH的形成机制、保护机理的研究不够深入,对涂层失效过程中的涂层结构的变化了解甚少,各种因素的影响规律也不是很清楚,因此,需要在基础方面进行更多的研究工作。
不同的制备工艺、不同的主体,都可能影响缓蚀剂在LDH层间插层量的多少以及释放速率,这方面的研究报道较少。
镁合金LDH涂层在腐蚀环境中的耐久性一直是其应用中的短板,LDH在腐蚀溶液中长期浸泡后,有可能破坏其原来的层状结构,或者当腐蚀性离子吸附达到饱和后不再吸附,失去了其离子交换性能和防护性能,因此如何提高耐久性应是今后重点的研究内容。
缓蚀剂在溶液中的协同效应已被广泛研究。研究表明,单一的缓蚀剂使用效果一般都不太理想,并且用量较大、费用较高。大多数情况下,在腐蚀溶液中同时加入两种或者两种以上缓蚀剂时,缓蚀效果比单独使用一种缓蚀剂时会有很大的提高,而且降低了使用浓度。有鉴于此,将两种或者两种以上的缓蚀剂同时添加插层到LDH中,利用它们之间的协同效应,可望能进一步提升涂层的防腐效果[30,48]。依靠多种具有协同效应的缓蚀剂的嵌入,有可能稳定其层状结构,或者在镁合金表面逐层沉积不同缓蚀剂插层的LDH,构建出多重防腐体系,有可能缓解LDH膜层耐久性的问题。
合成LDH时用到的金属盐,多为硝酸盐,因硝酸盐一般为危化品,使用受到限制,而氯盐十分便宜,比如氯化镁,我国盐湖中含有丰富的氯化镁资源,因此今后应研究使用氯盐合成LDH的工艺和效果,以期为LDH大规模应用奠定基础。
总之,缓蚀剂插层的LDH在镁合金防护中有着十分广阔的应用前景。通过今后的深入研究,将有助于提高镁合金腐蚀防护水平以及自愈涂层的开发。
参考文献
1 Zhang C X, Luo X H, Pan X Y, et al. Self-healing Li-Al layered double hydroxide conversion coating modified with aspartic acid for 6N01 Al alloy [J]. Appl. Surf. Sci., 2017, 394: 275
doi: 10.1016/j.apsusc.2016.10.034
2 Hornberger H, Virtanen S, Boccaccini A R. Biomedical coatings on magnesium alloys-A review [J]. Acta Biomater., 2012, 8: 2442
doi: 10.1016/j.actbio.2012.04.012 pmid: 22510401
3 Amini R, Sarabi A A. The corrosion properties of phosphate coating on AZ31 magnesium alloy: the effect of sodium dodecyl sulfate (SDS) as an eco-friendly accelerating agent [J]. Appl. Surf. Sci., 2011, 257: 7134
doi: 10.1016/j.apsusc.2011.03.072
4 Ouyang Y J, Hu T, Wang J Y, et al. Electrochemical deposition and characterization of layered double hydroxide film on magnesium alloys [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 453
4 欧阳跃军, 胡婷, 王佳音 等. 镁合金表面层状双氢氧化物的电化学沉积和表征 [J]. 中国腐蚀与防护学报, 2019, 39: 453
5 Guo L, Wu W, Zhou Y F, et al. Layered double hydroxide coatings on magnesium alloys: A review [J]. J. Mater. Sci. Technol., 2018, 34: 1455
doi: 10.1016/j.jmst.2018.03.003
6 Lin J K, Hsia C L, Uan J Y. Characterization of Mg, Al-hydrotalcite conversion film on Mg alloy and Cl- and CO3 2- anion-exchangeability of the film in a corrosive environment [J]. Scr. Mater., 2007, 56: 927
doi: 10.1016/j.scriptamat.2007.02.020
7 Wu F X, Liang J, Peng Z J, et al. Electrochemical deposition and characterization of Zn-Al layered double hydroxides (LDHs) films on magnesium alloy [J]. Appl. Surf. Sci., 2014, 313: 834
doi: 10.1016/j.apsusc.2014.06.083
8 Wu L, Yang D N, Zhang G, et al. Fabrication and characterization of Mg-M layered double hydroxide films on anodized magnesium alloy AZ31 [J]. Appl. Surf. Sci., 2018, 431: 177
doi: 10.1016/j.apsusc.2017.06.244
9 Alibakhshi E, Ghasemi E, Mahdavian M, et al. Fabrication and characterization of PO4 3- intercalated Zn-Al-layered double hydroxide nanocontainer [J]. J. Electrochem. Soc., 2016, 163: C495
doi: 10.1149/2.1231608jes
10 Zhang G, Wu L, Tang A T, et al. A novel approach to fabricate protective layered double hydroxide films on the surface of anodized Mg-Al alloy [J]. Adv. Mater. Interfaces, 2017, 4: 1700163
doi: 10.1002/admi.201700163
11 Yu X, Wang J, Zhang M L, et al. Synthesis, characterization and anticorrosion performance of molybdate pillared hydrotalcite/in situ created ZnO composite as pigment for Mg-Li alloy protection [J]. Surf. Coat. Technol., 2008, 203: 250
doi: 10.1016/j.surfcoat.2008.08.074
12 Li D D, Wang F Y, Yu X, et al. Anticorrosion organic coating with layered double hydroxide loaded with corrosion inhibitor of tungstate [J]. Prog. Org. Coat., 2011, 71: 302
doi: 10.1016/j.porgcoat.2011.03.023
13 Wang X, Li L X, Xie Z H, et al. Duplex coating combining layered double hydroxide and 8-quinolinol layers on Mg alloy for corrosion protection [J]. Electrochim. Acta, 2018, 283: 1845
doi: 10.1016/j.electacta.2018.07.113
14 Wang L D, Zong Q F, Sun W, et al. Chemical modification of hydrotalcite coating for enhanced corrosion resistance [J]. Corros. Sci., 2015, 93: 256
doi: 10.1016/j.corsci.2015.01.033
15 Anjum M J, Zhao J M, Asl V Z, et al. In-situ intercalation of 8-hydroxyquinoline in Mg-Al LDH coating to improve the corrosion resistance of AZ31 [J]. Corros. Sci., 2019, 157: 1
doi: 10.1016/j.corsci.2019.05.022
16 Chen J L, Fang L, Wu F, et al. Comparison of corrosion resistance of MgAl-LDH and ZnAl-LDH films intercalated with organic anions ASP on AZ31 Mg alloys [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 2424
doi: 10.1016/S1003-6326(20)65389-4
17 Wen T T, Yan R, Wang N, et al. PPA-containing layered double hydroxide (LDH) films for corrosion protection of a magnesium alloy [J]. Surf. Coat. Technol., 2020, 383: 125255
doi: 10.1016/j.surfcoat.2019.125255
18 Chen J, Song Y W, Shan D Y, et al. Modifications of the hydrotalcite film on AZ31 Mg alloy by phytic acid: the effects on morphology, composition and corrosion resistance [J]. Corros. Sci., 2013, 74: 130
doi: 10.1016/j.corsci.2013.04.034
19 Song Y H, Tang Y, Fang L, et al. Enhancement of corrosion resistance of AZ31 Mg alloys by one-step in situ synthesis of ZnAl-LDH films intercalated with organic anions (ASP, La) [J]. J. Magnes. Alloy., 2021, 9: 658
doi: 10.1016/j.jma.2020.03.013
20 Li L X, Xie Z H, Fernandez C, et al. Development of a thiophene derivative modified LDH coating for Mg alloy corrosion protection [J]. Electrochim. Acta, 2020, 330: 135186
doi: 10.1016/j.electacta.2019.135186
21 Hu T, Ouyang Y J, Xie Z H, et al. One-pot scalable in situ growth of highly corrosion-resistant MgAl-LDH/MBT composite coating on magnesium alloy under mild conditions [J]. J. Mater. Sci. Technol., 2021, 92: 225
doi: 10.1016/j.jmst.2021.03.021
22 Chen J L, Fang L, Wu F, et al. Corrosion resistance of a self-healing rose-like MgAl-LDH coating intercalated with aspartic acid on AZ31 Mg alloy [J]. Prog. Org. Coat., 2019, 136: 105234
23 Zhou M, Pang X L, Wei L, et al. Insitu grown superhydrophobic Zn-Al layered double hydroxides films on magnesium alloy to improve corrosion properties [J]. Appl. Surf. Sci., 2015, 337: 172
doi: 10.1016/j.apsusc.2015.02.086
24 Zhang F, Zhang C L, Zeng R C, et al. Corrosion resistance of the superhydrophobic Mg(OH)2/Mg-Al layered double hydroxide coatings on magnesium alloys [J]. Metals, 2016, 6: 85
doi: 10.3390/met6040085
25 Zhang C L, Zhang F, Song L, et al. Corrosion resistance of a superhydrophobic surface on micro-arc oxidation coated Mg-Li-Ca alloy [J]. J. Alloy. Compd., 2017, 728: 815
doi: 10.1016/j.jallcom.2017.08.159
26 Ba Z X, Dong Q S, Zhang X B, et al. Cerium-based modification treatment of Mg-Al hydrotalcite film on AZ91D Mg alloy assisted with alternating electric field [J]. J. Alloy. Compd., 2017, 695: 106
doi: 10.1016/j.jallcom.2016.10.139
27 Zeng R C, Li X T, Liu Z G, et al. Corrosion resistance of Zn-Al layered double hydroxide/poly (lactic acid) composite coating on magnesium alloy AZ31 [J]. Front. Mater. Sci., 2015, 9: 355
doi: 10.1007/s11706-015-0307-7
28 Peng F, Wang D H, Tian Y X, et al. Sealing the pores of PEO coating with Mg-Al layered double hydroxide: enhanced corrosion resistance, cytocompatibility and drug delivery ability [J]. Sci. Rep., 2017, 7: 8167
doi: 10.1038/s41598-017-08238-w pmid: 28811545
29 Zhang G, Wu L, Tang A T, et al. Active corrosion protection by a smart coating based on a MgAl-layered double hydroxide on a cerium-modified plasma electrolytic oxidation coating on Mg alloy AZ31 [J]. Corros. Sci., 2018, 139: 370
doi: 10.1016/j.corsci.2018.05.010
30 Wu L, Ding X X, Zheng Z C, et al. Doublely-doped Mg-Al-Ce-V2O7 4- LDH composite film on magnesium alloy AZ31 for anticorrosion [J]. J. Mater. Sci. Technol., 2021, 64: 66
doi: 10.1016/j.jmst.2019.09.031
31 Hao L, Yan T T, Zhang Y M, et al. Fabrication and anticorrosion properties of composite films of silica/layered double hydroxide [J]. Surf. Coat. Technol., 2017, 326: 200
doi: 10.1016/j.surfcoat.2017.06.024
32 Zhang Y, Yu P H, Wang J P, et al. LDHs/graphene film on aluminum alloys for active protection [J]. Appl. Surf. Sci., 2018, 433: 927
doi: 10.1016/j.apsusc.2017.10.126
33 Yan L C, Zhou M, Pang X L, et al. One-step in situ synthesis of reduced graphene oxide/Zn-Al layered double hydroxide film for enhanced corrosion protection of magnesium alloys [J]. Langmuir, 2019, 35: 6312
doi: 10.1021/acs.langmuir.9b00529 pmid: 31013091
34 Zhang Y, Li Y D, Ren Y S, et al. Double-doped LDH films on aluminum alloys for active protection [J]. Mater. Lett., 2017, 192: 33
doi: 10.1016/j.matlet.2017.01.038
35 Asl V Z, Zhao J M, Anjum M J, et al. The effect of cerium cation on the microstructure and anti-corrosion performance of LDH conversion coatings on AZ31 magnesium alloy [J]. J. Alloy. Compd., 2020, 821: 153248
doi: 10.1016/j.jallcom.2019.153248
36 Asl V Z, Zhao J M, Palizdar Y, et al. Influence of pH value and Zn/Ce cations ratio on the microstructures and corrosion resistance of LDH coating on AZ31 [J]. Corros. Commun., 2022, 5: 73
doi: 10.1016/j.corcom.2022.02.002
37 Zhao J, Xia L, Sehgal A, et al. Effects of chromate and chromate conversion coatings on corrosion of aluminum alloy 2024-T3 [J]. Surf. Coat. Technol., 2001, 140: 51
doi: 10.1016/S0257-8972(01)01003-9
38 Zhang J L, Gu C D, Tong Y Y, et al. A smart superhydrophobic coating on AZ31B magnesium alloy with self-healing effect [J]. Adv. Mater. Interfaces, 2016, 3: 1500694
doi: 10.1002/admi.201500694
39 Zeng R C, Liu Z G, Zhang F, et al. Corrosion of molybdate intercalated hydrotalcite coating on AZ31 Mg alloy [J]. J. Mater. Chem., 2014, 2A: 13049
40 Xiong P, Yan J L, Wang P, et al. A pH-sensitive self-healing coating for biodegradable magnesium implants [J]. Acta Biomater., 2019, 98: 160
doi: S1742-7061(19)30288-0 pmid: 31029829
41 Hu J Y, Huang D B, Zhang G A, et al. Research on the inhibition mechanism of tetraphenylporphyrin on AZ91D magnesium alloy [J]. Corros. Sci., 2012, 63: 367
doi: 10.1016/j.corsci.2012.06.021
42 Zhao Y B, Zhang Z, Shi L Q, et al. Corrosion resistance of a self-healing multilayer film based on SiO2 and CeO2 nanoparticles layer-by-layer assembly on Mg alloys [J]. Mater. Lett., 2019, 237: 14
doi: 10.1016/j.matlet.2018.11.069
43 Gnedenkov A S, Sinebryukhov S L, Mashtalyar D V, et al. Protective properties of inhibitor-containing composite coatings on a Mg alloy [J]. Corros. Sci., 2016, 102: 348
doi: 10.1016/j.corsci.2015.10.026
44 Jamali S S, Moulton S E, Tallman D E, et al. Self-healing characteristic of praseodymium conversion coating on AZNd Mg alloy studied by scanning electrochemical microscopy [J]. Electrochem. Commun., 2017, 76: 6
doi: 10.1016/j.elecom.2017.01.004
45 Calado L M, Taryba M G, Carmezim M J, et al. Self-healing ceria-modified coating for corrosion protection of AZ31 magnesium alloy [J]. Corros. Sci., 2018, 142: 12
doi: 10.1016/j.corsci.2018.06.013
46 Ding C D, Tai Y, Wang D, et al. Superhydrophobic composite coating with active corrosion resistance for AZ31B magnesium alloy protection [J]. Chem. Eng. J., 2019, 357: 518
doi: 10.1016/j.cej.2018.09.133
47 Anjum M J, Zhao J M, Tabish M, et al. Influence of the 8-quinolinol concentration and solution pH on the interfacial properties of self-healing hydrotalcite coating applied to AZ31 magnesium alloy [J]. Mater. Today Commun., 2021, 26: 101923
48 Cao Y H, Zheng D J, Luo J S, et al. Enhanced corrosion protection by Al surface immobilization of in-situ grown layered double hydroxide films co-intercalated with inhibitors and low surface energy species [J]. Corros. Sci., 2020, 164: 108340
doi: 10.1016/j.corsci.2019.108340
免责声明:本网站所转载的文字、图片与视频资料版权归原创作者所有,如果涉及侵权,请第一时间联系本网删除。
官方微信
《腐蚀与防护网电子期刊》征订启事
- 投稿联系:编辑部
- 电话:010-62316606
- 邮箱:fsfhzy666@163.com
- 腐蚀与防护网官方QQ群:140808414