摘要
埃洛石纳米管 (HNTs) 是一种天然的硅铝酸盐类纳米材料,具有独特的中空管状结构、比表面积大和反应活性高等特点,其作为纳米装载器在智能防腐涂层领域中凸显出越来越重要的应用价值。本文简述了HNTs的结构和性质,分析了HNTs在智能涂层领域应用的可行性,阐述了HNTs表面改性机理和缓蚀剂负载影响因素,分析了改性HNTs作为自修复单元在智能防腐涂层中的应用研究进展。同时,对HNTs智能涂层的功能化改进方面进行了展望。
关键词: 埃洛石 ; 负载改性 ; 自修复涂层
我国已经明确提出建设海洋强国的战略目标,海洋环境下工程材料的腐蚀是制约海洋开发的主要问题之一[1]。目前,涂层是海洋装备最有效、最常用的防护手段,是确保装备在严酷海洋环境下长期可靠服役的安全屏障[2,3]。
涂层主要通过物理隔离屏蔽效应,使氧、水分、电解质等有害的腐蚀性成分不易到达基体,从而实现对基体金属构件的防腐,因此,涂层性能是决定海洋装备服役寿命的关键因素[4,5]。然而,传统防腐涂层在制备过程中不可避免的会存在一些气孔、微裂纹等缺陷,在一些极端的海洋腐蚀环境下 (如高温、高湿、高盐的海上区域),H2O、O2、Cl-等腐蚀介质沿着这些缺陷进入涂层,直至金属基体界面,诱发基材的电化学腐蚀,腐蚀产物的体积增大、界面局部碱化等作用会使涂层剥离面积不断扩展,导致涂层快速失效[6-8]。在涂层中添加缓蚀剂,抑制金属基材在腐蚀介质渗透涂层后的电化学腐蚀过程,从而赋予涂层自修复的主动防护功能,形成智能防腐涂层,是提升海洋涂层防护性能的有效途径[9-13]。然而,由于大多数金属缓蚀剂是水溶性的,当直接添加到涂层中时,缓蚀剂易溶出,而且溶出后留下的孔洞会破坏涂层的屏蔽性能,同时,缓蚀剂也可能与涂层反应,破坏涂层原有结构,起到负面作用[5]。为了克服这些问题,通常用微胶囊载体或纳米容器来储存缓蚀剂,制成具有响应-可控释放能力的缓蚀剂纳米载体后再加入涂层,并实现在特定环境下对缓蚀剂的可控释放,一方面避免缓蚀剂与涂膜直接接触,另一方面实现缓蚀剂的可控释放,已成为了智能防腐涂层的重要研究方向[10,13]。目前,以化学合成方法制备的人工缓蚀剂装载器,如聚合物微胶囊、多孔SiO2、sol-gel纳米颗粒、纳米管等[14,15],因工艺复杂、成本高、量产难等原因,越来越满足不了智能防腐涂层领域的应用需求,因此,探索更适合当前发展需要的自然、绿色、低成本缓蚀剂承载材料成为智能防腐涂层领域关注的核心点。
埃洛石是一种天然的具有一定长径比的纳米管状粒子,已应用到物质吸附、存储、输运、催化等多个领域[16-18]。2008年,Shchukin等[19]首次将埃洛石纳米管 (HNTs) 作为装载器负载2-巯基苯并噻唑缓蚀剂,并在sol-gel涂层中实现显著的自修复功能,引发了智能防腐涂层领域研究人员对HNTs的关注。2012年,Yah等[20]研究了选择性刻蚀HNTs内腔中空结构可以改善HNTs对物质的负载和释放行为;2016年,Vijayan等[21]将负载环氧单体的HNTs作为功能填料加入到环氧涂层中,以改善涂层综合性能;2019年,Asadi等[22]将Zn2+作为缓蚀剂负载到HNTs上,制备的Zn2+@HNTs/环氧涂层防护性能良好;2020年,Khan等[23]采用真空负载和层层自组装技术制备了负载咪唑、十二烷胺两种缓蚀剂的杂化HNTs,作为智能修复单元加入到有机涂层中,起到了良好效果。HNTs在智能防腐涂层领域的研究显示出HNTs在该领域的重要研究价值。因此,本文将HNTs在智能防腐涂层领域的应用研究情况进行综述,以期能够对该领域的学者提供一些有益参考。
1 HNTs的结构和性能
埃洛石是由高岭石的片层在天然条件下卷曲而成,主要以纳米管状的形态存在于自然界中[24]。属于单斜晶系的含水层状结构硅酸盐矿物,理想化学分子式为Al2O3·2SiO2·nH2O。按水合程度的不同,当n=2时,层间距0.7 nm,命名为HNTs-7?;当n=6时,层间距为1 nm命名为HNTs-10?。将Halloysite-10?在高温下焙烧,可使其层间的H2O分子脱离形成Halloysite-7? (反应1)。由HNTs-10?的晶体结构[24]可以看出,HNTs是铝氧八面体层与硅氧四面体层之间的空间不相匹配位错促使片状晶体卷曲成管,层片弯卷时,硅氧四面体层在外,铝氧八面体层在内。因此,HNTs管外壁表面暴露的是Si—O—Si基团,管腔内壁表面暴露的是Al—OH基团,管边缘以及外壁缺陷处也存在一定数量的Al—OH和Si—OH基团。
(1)
纳米管状埃洛石是由二十多个片层卷曲而成,相关物化特性参数见表1。由表可知,HNTs具有长径比大 (约10~50)、弹性模量高 (140 GPa,理论值为230~340 GPa)、尺寸小、密度低的特点,因此,HNTs在轻质高强聚合物材料领域有广泛应用。另外,HNTs的大部分元素不可燃,结构水的释放温度为400~600 ℃,分解出的水可以稀释可燃气体,抑制燃烧,因此,HNTs可作为无卤阻燃剂加入到聚合物中,制备阻燃材料[25]。
表1 HNTs典型特征参数[25]
HNTs具有完美的管状中空结构,纳米管外径约40~70 nm,内径约15~40 nm,内腔占比约11%~39%,具有良好的物质装载功能。由于HNTs这种天然物质具有良好的生物相容性,HNTs的物质装载功能最早用在生物医药领域,如DNA装载、抗癌药物靶向运输、低毒口服药载体、生物酶固化等。HNTs优异的物质装载功能也使其成为智能防腐涂层领域替代原有缓释胶囊类载体的极具发展潜力的载体缓释材料[16,26]。除了物质装载功能,HNTs的一些其他性能也有利于其在智能防腐涂层领域的应用。
1.1 分散性能
在一般而言,纳米颗粒表面能高,颗粒间相互作用强,容易团聚,例如碳纳米管,在固有Van der Waals力作用下存在显著的团聚现象,如何分散成为难题。然而,由于HNTs外表面暴露的是Si—O—Si基团,羟基和硅氧烷含量低,结构单元间以氢键和Van der Waals力等次价键的形式结合,比较容易实现结构单元的解离和分散,不容易团聚。此外,管状的HNTs具有较大的长径比,不同纳米管大面积接触而形成团聚体的几率小,也有利于HNTs在高分子物质中的分散。
1.2 表面性能
由于HNTs内外表面化学构成 (外表面为[SiO4]四面体,内表面为[AlO6]八面体层及表面的Al—OH),内外表面分别呈现出Al2O3与和SiO2相类似的性能,可以利用与SiO2和Al2O3具有不同反应活性的化合物对HNTs进行选择性改性。例如,磷酸可与管腔的Al—OH层位点结合,但不与外表面的Si—O—Si层结合,处理后的HNTs内腔具有疏水性,这种结构允许非极性分子 (如油和苯酚) 选择性吸附在HNTs的内腔中,并提供非水溶性材料更好的负载/释放特性。此外,HNTs的Al—O八面体内层和Si—O四面体外层 (图1) 在水中会以相反的方式电离,当溶液的pH在2.5~8.5的范围内,HNTs管腔内表面带正电荷,管壁外表面带负电荷。因此,可以通过简单的静电吸附,将不同电负性的客体分别负载到管内或管外,例如阴离子吸附在HNTs管腔内,或阳离子吸附在外表面,实现选择性改性,可为层层自组装 (LBL) 提供有利条件。
图1 强酸和强碱环境下HNTs的反应示意图[27]
2 HNTs改性技术研究进展
2.1 刻蚀扩孔
HNTs的缓蚀剂负载能力与其内腔尺寸直接相关。理论上讲,在酸或碱的环境下,HNTs内壁的Al—OH和外壁的Si—O都可能溶解,但溶解速率不一样。White等[27]研究强酸 (1 mol/L H2SO4) 和强碱 (1 mol/L NaOH) 腐蚀环境下HNTs的内外壁溶解行为的差异:在强酸84 d浸泡后,Al(III) 的溶解量大于Si(Ⅳ) 的溶解量,使得HNTs内壁出现SiO2颗粒;在强碱84 d浸泡后,Si(Ⅳ) 的溶解量大于Al(III) 的溶解量,使得HNTs外壁出现片状Al(OH)3,通过光谱分析,强碱环境下,17%的Al(III) 和29%的Si(Ⅳ) 发生溶解,而在强酸环境下,35%的Al(III) 和15%的Si(Ⅳ) 发生溶解,反应示意如图1所示。因此,对于HNTs而言,酸处理更有利于增加内腔体积,从而增加缓蚀剂负载效率。
在HNTs的酸蚀扩孔过程中,溶液中的H+首先扩散到HNTs的内腔中,然后与内壁的Al—OH反应,生成的腐蚀产物再从内腔中扩散出来,其过程示意如图2所示。然而,HNTs酸蚀扩孔的效果与处理液浓度、处理液温度、处理时间相关。根据Abdullayev等[29]研究表明,天然HNTs的内腔体积仅为总体积的10%,通过不同浓度H2SO4、温度和反应时间处理后,HNTs内壁的Al—OH发生选择性溶解而增加内径,内腔体积最大可增加40%~50%,苯并三氮唑缓蚀剂的装载效率可提高4倍。Zhang等[30]、Falcon等[28]的研究中也采取了类似的H2SO4刻蚀工艺扩大HNTs的内腔体积,取得了良好效果。
图2 HNTs酸蚀扩孔反应过程示意[28]
同时,由于HNTs在Al—O八面体内层和Si—O四面体外层之间存在一定量的H2O[24],通过高温煅烧除去层间的H2O分子,可重组HNTs管壁的网络结构,提高HNTs比表面积,改善反应活性和吸附性能。例如,Yu等[31]研究表明,将HNTs在550 ℃温度下煅烧后,HNTs孔隙率增加,缓蚀剂负载量达到最大的8.2%,缓释剂释放行为也得到改善;Shu等[32]将HNTs在750~900 ℃煅烧后采用HCl刻蚀,可制得了比表面积达414 m2/g的改性HNTs,可有效改善HNTs的缓蚀剂负载性能。
2.2 表面化学改性
HNTs内表面、端部和外表面缺陷处存在—OH提供了表面化学改性的反应活性位点。通过表面改性,将一些功能基团接枝到表面,可以改善HNTs粒子与涂层之间的相容性和分散均匀性,改善涂层对纳米粒子的润湿作用,提高HNTs与涂层之间的界面结合,进而提高涂层性能。
硅烷偶联剂改性是对HNTs最常见的化学改性方法。硅烷偶联剂水解后形成Si—OH,可以与HNTs表面的—OH缩合反应而接枝。多种硅烷偶联剂可在HNTs表面接枝,如表2所示。
表2 HNTs表面接枝用硅烷偶联剂分子结构
Yuan等[35]研究了APTES硅烷偶联剂接枝HNTs的反应机理,认为不仅存在APTES与HNTs表面羟基的接枝反应,还存在自聚合反应,即水化后的APTES的Si—OH彼此之间发生缩合,从而形成网状结构,在接枝过程中,采用真空处理能够使硅烷偶联剂更好的进入HNTs内腔中,从而提高接枝比例。
除了偶联剂,Yah等[20]采用正十八醇磷酸酯 (ODP) 改性HNTs内腔,通过真空负压处理,将HNTs置于含ODP的溶液中常温搅拌1周,使ODP成功在HNTs的内表面接枝。然后,采用AEAPS改性其外表面,通过这种改性方法,可以使HNTs负载疏水性的物质。此外,由于HNTs外表面的Si—O—Si基团反应活性低,有机基团的化学接枝效率低,因此,可以利用HNTs外表面在一定pH环境下呈负电性的特性,通过静电作用吸附一些正电离子,起到外表面改性的效果。
2.3 缓蚀剂装载
根据被负载物质的摩尔质量,Yuan等[24]将HNTs负载的物质分为3类:(1) MW<300 g/mol的低摩尔质量物质,如8-羟基喹啉、苯并三氮唑等;(2) 300 g/mol<MW<1000 g/mol的中摩尔质量物质,如芬太尼、硝苯吡啶等;(3) MW>1000 g/mol的高摩尔质量物质,如尿素酶、胰岛素等。目前,用于智能防腐涂层的HNTs负载缓蚀剂有2-巯基苯并噻唑 (MBT)[19,39,40]、苯并三氮唑 (BTA)[39,41,42]、2-巯基苯并咪唑 (MBI)[39,43]、十二胺 (dodecylamine)[30]、8-羟基喹啉 (8-hydroxyquinoline)[43-45]、咪唑 (imidazole)[23]等。
HNTs负载有机缓蚀剂一般是采取真空方法直接装载,其原理过程如图3所示:首先,将HNTs置入含缓蚀剂的饱和溶液中;然后,采用抽真空方式除去HNTs内腔中的空气,在抽真空过程中,溶液中会不断析出小气泡,意味着HNTs内腔中的气体正不断出来,富含缓蚀剂的溶液将进入内腔中,一般需要重复抽真空过程3次以上以提高缓蚀剂负载量;真空负载过程完成后,将HNTs离心分离出来,经冲洗、干燥后,得到负载一定量缓蚀剂的HNTs。缓蚀剂的最终负载量与HNTs的微观结构以及溶剂类型有关。例如,酸蚀扩孔后的HNTs缓蚀剂负载量会增加;在丙酮中负载缓蚀剂的效率要比在水溶液中高,这是由于丙酮在负压环境下会挥发,使溶液中缓蚀剂浓度升高,同时,丙酮的粘度较低,有利于缓蚀剂分子扩散进入HNTs的内腔中。
图3 HNTs真空负载缓蚀剂过程
除了有机缓蚀剂,一些具有缓蚀作用的阳离子,如Zn2+[22,46]、Ce3+[47,48]、Zr4+[48]等,也可以通过静电吸附、螯合作用负载到HNTs,加入到涂层中后能起到一定的自修复作用。
2.4 封端处理
对于微胶囊填充型的自修复涂层而言,胶囊中缓蚀剂可控释放是涂层实现自修复功能的另一关键问题。HNTs两端是开放的,当负载缓蚀剂后,如果不加处理,内腔中的缓蚀剂将在涂层中自主释放,例如前期不需要修复时暴释,但当涂层需要腐蚀修复时已释放殆尽,不能实现智能自修复功能。因此,需要对HNTs进行封端处理以实现内腔中缓蚀剂的可控释放。Lvov等[26]总结了3种常见的HNTs封端方法:
(1) 层层自组装技术[23]。利用HNTs表面带负电的特性,首先可通过静电作用在HNTs表面覆盖一层阳离子聚合物,如壳聚糖、聚乙烯亚胺 (PEI)、聚苯乙烯、溴化氢聚合物等,覆盖后的HNTs表面将呈正电性。这时,可再覆盖一层带负电的聚合物,如聚苯乙烯磺酸钠 (PSS)、聚丙烯酸 (PAA) 等,最终在HNTs表面形成阳离子聚合物/阴离子聚合物的复合层,其过程如图4a所示。
图4 HNTs表面层层自组装过程和HNTs端部Cu2+封端处理示意[23,49]
(2) 在HNTs表面形成脲醛涂层。将HNTs置入脲醛涂层的预聚体溶液中,由于预聚体中存在N—H基团,可在HNTs表面和端部吸附,最终可以在HNTs端部形成脲醛覆盖层,达到封端的目的。
(3) 在HNTs端部生成金属-缓蚀剂络合物。最常见的是将负载缓蚀剂的HNTs置入CuSO4溶液中,使腔内的缓蚀剂与溶液中的Cu2+在端部生成Cu-缓蚀剂络合物,从而起到封端的作用[19,41],其机理过程如图4b所示。
3 HNTs在智能防腐涂层中的应用研究
采用HNTs负载缓蚀剂加入到涂层中从而赋予涂层智能自修复功能,一般包括以下步骤:首先,采用酸洗扩孔、真空负载等工艺将缓蚀剂装入HNTs内腔中;然后,采用层层自组装方法对负载缓蚀剂的HNTs进行封装以控制缓蚀剂释放;最后,将改性后的HNTs添加到涂层中。流程如图5所示,其中,有几个关键过程会影响自修复涂层的最终性能:一是HNTs中缓蚀剂的负载量,负载量越大,自修复的效果越好;二是缓蚀剂的可控智能释放,一般需要含缓蚀剂的修复单元对pH等环境刺激进行相应,进而释放内部缓蚀剂,对破损部位进行修复;三是改性后HNTs与涂层的相容性,由于无机纳米容器与有机涂层的相容性较低,常会影响涂层的综合防护性能,可对其表面用有机材料进行修饰,从而提高其与涂层的相容性。
图5 HNTs智能防腐涂层的制备流程
目前,基于HNTs负载缓蚀剂的自修复涂层已有多个研究体系,并用于不同材料的腐蚀防护,有良好效果,典型的如表3所示。
表3 不同基材上典型的HNTs自修复涂层
4 总结与展望
模仿生物组织损伤愈合原理,将可对周围环境变化响应的智能自修复微单元 (含缓蚀剂的微胶囊) 引入涂层,从而赋予涂层智能响应、自修复等主动防护功能,是提升海洋涂层防护性能的有效途径。对于智能防腐涂层,实现其长效自修复的关键在于对缓蚀剂种类的严格筛选,对缓蚀剂载体的合理设计,以及缓蚀剂胶囊与涂层基体的良好结合。
HNTs与传统纳米材料相比,具有独特的纳米管状结构、低毒性及良好的生物相容性,且不需要其他复杂能耗处理等诸多优点,是一种可从天然矿物中获得的“绿色”纳米材料,在智能防腐涂层领域有广阔的应用前景。对于以HNTs为缓蚀剂载体的智能防腐涂层而言,尽管在功能负载和表面改性方面有一定进展,但以下问题值得进一步关注:一是HNTs自身存在孔隙,处理不好会在涂层体系中引入额外缺陷,破坏涂层的屏蔽性能;二是HNTs负载缓蚀剂可控释放难度大,难以对外部环境刺激形成精确响应,缓蚀剂不受控释放会限制涂层的自修复功能。
未来,HNTs在智能防腐涂层领域的应用,可以通过对负载物质的多功能化来对涂层性能进行提升,例如负载防污剂制备防腐防污一体化涂层、负载荧光指示剂制备预警涂层、负载磁性物质制备吸波涂层等。此外,HNTs在改善高分子物质力学性能、防火功能的特性,也可以赋予智能防腐涂层更多的功能,值得进一步研究。
参考文献
1 Hou B R, Zhang D, Wang P. Marine corrosion and protection: current status and prospect [J]. Bull. Chin. Acad. Sci., 2016, 31: 1326
1 侯保荣, 张盾, 王鹏. 海洋腐蚀防护的现状与未来 [J]. 中国科学院院刊, 2016, 31: 1326
2 Han E-H, Chen J M, Su Y J, et al. Corrosion protection techniques of marine engineering structure and ship equipment—current status and future trend [J]. Mater. China, 2014, 33: 65
2 韩恩厚, 陈建敏, 宿彦京 等. 海洋工程结构与船舶的腐蚀防护—现状与趋势 [J]. 中国材料进展, 2014, 33: 65
3 Luan H, Meng F D, Liu L, et al. Preparation and anticorrosion performance of M-phenylenediamine-graphene oxide/organic coating [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 161
3 栾浩, 孟凡帝, 刘莉 等. 间苯二胺-氧化石墨烯/有机涂层的制备及防腐性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 161
4 Wang G R, Zheng H P, Cai H Y, et al. Failure process of epoxy coating subjected test of alternating immersion in artificial seawater and dry in air [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 571
4 王贵容, 郑宏鹏, 蔡华洋 等. 环氧防腐涂料在模拟海水干湿交替条件下的失效过程 [J]. 中国腐蚀与防护学报, 2019, 39: 571
5 Cao J Y, Wang Z Q, Li L, et al. Failure mechanism of organic coating with modified graphene under simulated deep-sea alternating hydrostatic pressure [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 139
5 曹京宜, 王智峤, 李亮 等. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制 [J]. 中国腐蚀与防护学报, 2020, 40: 139
6 Zhao Z Y, Wang J. Progresses in cathodic delamination of organic coatings from metals [J]. J. Chin. Soc. Corros. Prot., 2008, 28: 116
6 赵增元, 王佳. 有机涂层阴极剥离作用研究进展 [J]. 中国腐蚀与防护学报, 2008, 28: 116
7 Wang G R, Shao Y W, Wang Y Q, et al. Effect of applied cathodic protection potential on cathodic delamination of damaged epoxy coating [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 235
7 王贵容, 邵亚薇, 王艳秋 等. 阴极保护电位对破损环氧涂层阴极剥离的影响 [J]. 中国腐蚀与防护学报, 2019, 39: 235
8 Yang B Y, Wang Z W, Ma Y L. Research progress of layered double hydroxides in corrosion protection of metallic materials [J]. Surf. Technol., 2020, 49(12): 137
8 杨炳元, 王忠维, 麻彦龙. 层状双金属氢氧化物在金属腐蚀防护领域的研究进展 [J]. 表面技术, 2020, 49(12): 137
9 Pan M Q, Wang L T, Ding X, et al. The research progress of self-healing anti-corrosion coatings [J]. Mater. China, 2018, 37: 19
9 潘梦秋, 王伦滔, 丁璇 等. 自修复防腐涂层研究进展 [J]. 中国材料进展, 2018, 37: 19
10 Zhang Y, Fan W J, Zhang T F, et al. Review of intelligent self-healing coatings [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 299
10 张勇, 樊伟杰, 张泰峰 等. 涂层自修复技术研究进展 [J]. 中国腐蚀与防护学报, 2019, 39: 299
11 Gao H D, Cui Y, Liu L, et al. Influence of simulated deep sea pressured-flowing seawater on failure behavior of epoxy glass flake coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 39
11 高浩东, 崔宇, 刘莉 等. 深海压力-流速耦合环境对环氧玻璃鳞片涂层失效行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 39
12 Liu S H, Liu B, Xu D W, et al. Research progress on anti-corrosion coatings of layered double hydroxides [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 16
12 刘术辉, 刘斌, 徐大伟 等. 层状双金属氢氧化物防腐蚀涂层材料的研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 16
13 Wen J X, Zhang X, Liu Y X, et al. Preparation and performance of smart coating doped with nanocontainers of BTA@MSNs-SO3H-PDDA for anti-corrosion of carbon steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 309
13 文家新, 张欣, 刘云霞 等. 掺杂pH敏感性智能纳米容器BTA@MSNs-SO3H-PDDA碳钢智能防腐涂层的制备及性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 309
14 Liu T, Ma L W, Wang X, et al. Self-healing corrosion protective coatings based on micro/nanocarriers: a review [J]. Corros. Commun., 2021, 1: 18
doi: 10.1016/j.corcom.2021.05.004
15 Ye S N, Wang P, Sun Y C, et al. Research advances in microcapsuled self-healing coatings materials [J]. Surf. Technol., 2016, 45(6): 91
15 叶三男, 王培, 孙阳超 等. 微胶囊填充型自修复涂层材料研究进展 [J]. 表面技术, 2016, 45(6): 91
16 Lvov Y M, DeVilliers M M, Fakhrullin R F. The application of halloysite tubule nanoclay in drug delivery [J]. Expert Opin. Drug Del., 2016, 13: 977
doi: 10.1517/17425247.2016.1169271
17 Papoulis D. Halloysite based nanocomposites and photocatalysis: a review [J]. Appl. Clay Sci., 2019, 168: 164
doi: 10.1016/j.clay.2018.11.009
18 Bertolino V, Cavallaro G, Milioto S, et al. Polysaccharides/Halloysite nanotubes for smart bionanocomposite materials [J]. Carbohydr. Polym., 2020, 245: 116502
doi: 10.1016/j.carbpol.2020.116502
19 Shchukin D G, Lamaka S V, Yasakau K A, et al. Active anticorrosion coatings with halloysite nanocontainers [J]. J. Phys. Chem., 2008, 112C: 958
20 Yah W O, Takahara A, Lvov Y M. Selective modification of halloysite lumen with octadecylphosphonic acid: new inorganic tubular micelle [J]. J. Am. Chem. Soc., 2012, 134: 1853
doi: 10.1021/ja210258y
21 Poornima V P, El-Gawady Y M H, Al-Maadeed M A S A. Halloysite nanotube as multifunctional component in epoxy protective coating [J]. Ind. Eng. Chem. Res., 2016, 55: 11186
doi: 10.1021/acs.iecr.6b02736
22 Asadi N, Naderi R, Mahdavian M. Synergistic effect of imidazole dicarboxylic acid and Zn2+ simultaneously doped in halloysite nanotubes to improve protection of epoxy ester coating [J]. Prog. Org. Coat., 2019, 132: 29
23 Khan A, Hassanein A, Habib S, et al. Hybrid halloysite nanotubes as smart carriers for corrosion protection [J]. ACS Appl. Mater. Interfaces, 2020, 12: 37571
doi: 10.1021/acsami.0c08953
24 Yuan P, Tan D Y, Annabi-Bergaya F. Properties and applications of halloysite nanotubes: recent research advances and future prospects [J]. Appl. Clay Sci., 2015, 112/113: 75
25 Liu M X, Jia Z X, Jia D M, et al. Recent advance in research on halloysite nanotubes-polymer nanocomposite [J]. Prog. Polym. Sci., 2014, 39: 1498
doi: 10.1016/j.progpolymsci.2014.04.004
26 Lvov Y, Wang W C, Zhang L Q, et al. Halloysite clay nanotubes for loading and sustained release of functional compounds [J]. Adv. Mater., 2016, 28: 1227
doi: 10.1002/adma.201502341
27 White R D, Bavykin D V, Walsh F C. The stability of halloysite nanotubes in acidic and alkaline aqueous suspensions [J]. Nanotechnology, 2012, 23: 065705
28 Falcón J M, Sawczen T, Aoki I V. Dodecylamine-loaded halloysite nanocontainers for active anticorrosion coatings [J]. Front. Mater., 2015, 2: 69
29 Abdullayev E, Joshi A, Wei W B, et al. Enlargement of halloysite clay nanotube lumen by selective etching of aluminum oxide [J]. ACS Nano, 2012, 6: 7216
doi: 10.1021/nn302328x pmid: 22838310
30 Zhang A B, Pan L, Zhang H Y, et al. Effects of acid treatment on the physico-chemical and pore characteristics of halloysite [J]. Colloids Surf., 2012, 396A: 182
31 Yu D, Wang J, Hu W, et al. Preparation and controlled release behavior of halloysite/2-mercaptobenzothiazole nanocomposite with calcined halloysite as nanocontainer [J]. Mater. Des., 2017, 129: 103
doi: 10.1016/j.matdes.2017.05.033
32 Shu Z, Chen Y, Zhou J, et al. Nanoporous-walled silica and alumina nanotubes derived from halloysite: controllable preparation and their dye adsorption applications [J]. Appl. Clay Sci., 2015, 112/113: 17
33 Liu M X, Guo B C, Du M L, et al. Natural inorganic nanotubes reinforced epoxy resin nanocomposites [J]. J. Polym. Res., 2008, 15: 205
doi: 10.1007/s10965-007-9160-4
34 Li C P, Liu J G, Qu X Z, et al. A general synthesis approach toward halloysite-based composite nanotube [J]. J. Appl. Polym. Sci., 2009, 112: 2647
doi: 10.1002/app.29652
35 Yuan P, Southon P, Liu Z W, et al. Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane [J]. J. Phys. Chem., 2008, 112C: 15742
36 Luo P, Zhang J S, Zhang B, et al. Preparation and characterization of silane coupling agent modified halloysite for Cr(VI) removal [J]. Ind. Eng. Chem. Res., 2011, 50: 10246
doi: 10.1021/ie200951n
37 Zhang J H, Zhang D H, Zhang A Q, et al. Poly (methyl methacrylate) grafted halloysite nanotubes and its epoxy acrylate composites by ultraviolet curing method [J]. J. Reinf. Plast. Compos., 2013, 32: 713
doi: 10.1177/0731684412472745
38 Albdiry M T, Yousif B F. Morphological structures and tribological performance of unsaturated polyester based untreated/silane-treated halloysite nanotubes [J]. Mater. Des., 2013, 48: 68
doi: 10.1016/j.matdes.2012.08.035
39 Abdullayev E, Abbasov V, Tursunbayeva A, et al. Self-healing coatings based on halloysite clay polymer composites for protection of copper alloys [J]. ACS Appl. Mater. Interfaces, 2013, 5: 4464
doi: 10.1021/am400936m
40 Cui M M, Njoku D I, Li B W, et al. Corrosion protection of Aluminium Alloy 2024 through an epoxy coating embedded with smart microcapsules: the responses of smart microcapsules to corrosive entities [J]. Corros. Commun., 2021, 1: 1
doi: 10.1016/j.corcom.2021.06.001
41 Abdullayev E, Price R, Shchukin D, et al. Halloysite tubes as nanocontainers for anticorrosion coating with benzotriazole [J]. ACS Appl. Mater. Interfaces, 2009, 1: 1437
doi: 10.1021/am9002028
42 Joshi A, Abdullayev E, Vasiliev A, et al. Interfacial modification of clay nanotubes for the sustained release of corrosion inhibitors [J]. Langmuir, 2013, 29: 7439
doi: 10.1021/la3044973
43 Adsul S H, Bagale U D, Sonawane S H, et al. Release rate kinetics of corrosion inhibitor loaded halloysite nanotube-based anticorrosion coatings on magnesium alloy AZ91D [J]. J. Magnes. Alloys, 2021, 9: 202
44 ShchukinA E, Shchukin D, Grigoriev D. Halloysites and mesoporous silica as inhibitor nanocontainers for feedback active powder coatings [J]. Prog. Org. Coat., 2018, 123: 384
45 Wang M, Wang J H, Hu W B. Preparation and corrosion behavior of Cu-8-HQ@HNTs/epoxy coating [J]. Prog. Org. Coat., 2020, 139: 105434
46 Asadi N, Naderi R, Mahdavian M. Doping of zinc cations in chemically modified halloysite nanotubes to improve protection function of an epoxy ester coating [J]. Corros. Sci., 2019, 151: 69
doi: 10.1016/j.corsci.2019.02.022
47 Chen X J, Hu D C, Zhang Z L, et al. In situ assembly of halloysite nanotubes@cerium oxide nanohybrid for highly UV-shielding and superhydrophobic coating [J]. J. Alloy. Compd., 2019, 811: 151986
doi: 10.1016/j.jallcom.2019.151986
48 Manasa S, Jyothirmayi A, Siva T, et al. Effect of inhibitor loading into nanocontainer additives of self-healing corrosion protection coatings on aluminum alloy A356.0 [J]. J. Alloy. Compd., 2017, 726: 969
doi: 10.1016/j.jallcom.2017.08.037
49 Zahidah K A, Kakooei S, Ismail M C, et al. Halloysite nanotubes as nanocontainer for smart coating application: a review [J]. Prog. Org. Coat., 2017, 111: 175
50 Thanawala K, Khanna A S, Raman R K S, et al. Smart anti-corrosive self-healing coatings using halloysite nanotubes as host for entrapment of corrosion inhibitors [A]. Proceedings of the Australasian Corrosion Association Annual Conference: Corrosion and Prevention 2015 [C]. Adelaide, Australia, 2015
51 Molaei A, Amadeh A, Yari M, et al. Structure, apatite inducing ability, and corrosion behavior of chitosan/halloysite nanotube coatings prepared by electrophoretic deposition on titanium substrate [J]. Mater. Sci. Eng., 2016, 59C: 740
52 Sun M, Yerokhin A, Bychkova M Y, et al. Self-healing plasma electrolytic oxidation coatings doped with benzotriazole loaded halloysite nanotubes on AM50 magnesium alloy [J]. Corros. Sci., 2016, 111: 753
doi: 10.1016/j.corsci.2016.06.016
53 Njoku D I, Cui M M, Xiao H G, et al. Understanding the anticorrosive protective mechanisms of modified epoxy coatings with improved barrier, active and self-healing functionalities: EIS and spectroscopic techniques [J]. Sci. Rep., 2017, 7: 15597
doi: 10.1038/s41598-017-15845-0
免责声明:本网站所转载的文字、图片与视频资料版权归原创作者所有,如果涉及侵权,请第一时间联系本网删除。
官方微信
《腐蚀与防护网电子期刊》征订启事
- 投稿联系:编辑部
- 电话:010-62316606-806
- 邮箱:fsfhzy666@163.com
- 腐蚀与防护网官方QQ群:140808414