体心立方(BCC)金属在制备或服役过程中一旦引入少量的碳、氮、氧就会造成显著的硬化和脆化,但其微观机理一直是个迷。近日,西安交大材料学院的研究团队破解了体心立方金属铌氧脆之谜,相关成果以题为“Mechanism of hardening and damage initiation in oxygen embrittlement of body-centred-cubic niobium
”发表在金属材料顶尖期刊《Acta Materialia》上。
论文链接:
https://www.sciencedirect.com/science/article/pii/S1359645419301168
BCC结构的金属具有高熔点、高强度、抗辐照等优点,被广泛应用于工业界。以金属铌(Nb)为例,它作为一种典型难熔金属,具有熔点高、热强性好、密度低(相较于其他难熔金属)、加工性能好等优点,在高温环境下具有广泛的应用前景,被广泛用作航天运载装备的火焰喷嘴等关键受热部件。然而,高温条件下剧烈的吸氧会导致铌发生硬化、脆化和氧化,给铌合金的应用带来了巨大的挑战。
块体拉伸试样及断口组织形貌
多年来,各国研究者采用了多种方法来试图阐明体心立方金属的氧脆机理,但是进展缓慢。为了解决这一困扰,西安交通大学材料学院微纳中心研究人员将宏观力学行为研究方法同微纳米尺度原位力学性能分析和原子尺度模拟有效地结合起来,系统地研究了溶质原子氧对铌力学变形行为的影响,阐明了溶质原子氧对金属铌中点缺陷团聚、螺位错运动及永久损伤形核过程的影响,揭示了溶质原子氧造成金属铌硬化和脆化的微观机制,构建了金属铌氧脆的清晰物理图像。研究人员新发现的氧脆微观机理对阐明其它体心立方难熔金属在变形和辐照中的硬化和脆化行为具有重要的参考价值。
纳米力学拉伸测试及TEM下亚微观尺度的Nb与Nb-O
螺位错上氧导致的随机力场可以强化交互缠结与点缺陷的形成与硬化
该工作得到了国家重点研发计划、国家自然科学基金、国家外专局111计划等的共同资助。西安交通大学贾春林教授、米少波教授和路璐工程师在溶质原子氧表征方面提供了有益讨论。
更多关于材料方面、材料腐蚀控制、材料科普等方面的国内外最新动态,我们网站会不断更新。希望大家一直关注中国腐蚀与防护网http://www.ecorr.org
责任编辑:殷鹏飞
《中国腐蚀与防护网电子期刊》征订启事
投稿联系:编辑部
电话:010-62313558-806
邮箱:fsfhzy666@163.com
中国腐蚀与防护网官方 QQ群:140808414
免责声明:本网站所转载的文字、图片与视频资料版权归原创作者所有,如果涉及侵权,请第一时间联系本网删除。
官方微信
《中国腐蚀与防护网电子期刊》征订启事
- 投稿联系:编辑部
- 电话:010-62313558-806
- 邮箱:fsfhzy666@163.com
- 中国腐蚀与防护网官方QQ群:140808414