在块状金属玻璃(BMGs)中引入更松散的原子堆积区域,可以促进塑性变形,使BMGs在室温下更具延展性。在此,来自北京科技大学的吕昭平等研究者,提出了一种不同的合金设计方法,即掺杂非金属元素形成密集的填充图案。相关论文以题为“Substantially enhanced plasticity of bulk metallic glasses by densifying local atomic packing”发表在Nature Communications上。
论文链接:
https://www.nature.com/articles/s41467-021-26858-9
块状非晶玻璃从液态继承了无序的非晶结构。由于缺乏作为低势垒变形载体的晶体缺陷,如位错和堆垛缺陷,BMGs通常比它们的晶体对应物更强、更硬。然而,BMGs合金在室温下拉伸塑性极低,在载荷作用下往往发生灾难性破坏,严重阻碍了其广泛应用。与晶体相不同的是,BMGs的无序原子堆积不易定量描述,只有有限的方法来调整它们的结构-性能关系。因此,调整BMGs的力学性能以克服其室温脆性,一直是一个长期存在的挑战。
在远低于玻璃化转变温度的BMGs中,塑性变形主要是由于局部扩散跃迁或被称为剪切转变区(shear transformation zone, STZs)的原子团簇的局部共同剪切事件,即一组原子共同克服了局部原子重排的能量势垒鞍点。变形能力源于金属键合所固有的灵活性:离域电子允许金属原子在彼此之间滑动而不受键合断裂的影响,而键合断裂有利于损伤而非剪切,例如在离子玻璃中。尽管局部剪切转变开始的位置仍然难以预测,但人们普遍认为,在BMGs中引入更松散的填充区域,可以有效地促进局部塑性事件。这些区域具有较高的局部势能,在加载时容易发生非弹性变形,表现为类液体行为。因此,增加松散填充区域的数量,可以有效地提高BMGs的塑性。
这种材料设计路线,通过低温热循环或严重塑性变形等方法提高了BMGs的塑性,这些方法通常通过增加密度较低区域的可用性来增强结构波动。然而,目前大多数提高GMGSD塑性的方法,通常会由于引入更松散的填充区域而降低热稳定性和屈服强度。相比之下,松散填充区域的湮没通常被认为可以提高强度和硬度,并改善热稳定性,但往往会恶化塑性,正如BMGs中退火诱发的脆化所证明的那样。
在这里,研究者报告了一个新的设计概念,以改善BMGs的变形能力。研究者通过掺杂非金属元素(NMEs)来增加BMG的结构波动,这些元素具有较小的原子尺寸和与组成BMG的元素的混合负热。研究者选择的候选元素是氧、氮、碳和硼,分别添加到Ti-、Zr-和Cu基BMGs中,同时,确定了特别合适的掺杂体系(范围从0.1%到0.3%),因此,研究者观察到强度和延展性的显著提高。这可以归因于在非金属溶质周围形成的局部致密堆积区域(LDPRs)体积分数的增加,同时避免了脆性二次相的形成。这些LDPRs的邻近区域变得相对松散,从而增强了材料的结构波动,促进了局部剪切,极大地提高了材料的宏观塑性和韧性,并增强了强度。在热力学的指导下,根据与这些掺杂剂相关的适当的负混合热,该方法原则上是通用的,可以用于广泛改善MGs性能。
图1 基底与掺杂ZrTiHfCuNi BMGs材料的力学行为。
图2 基合金纳米压痕探针τmax的相对频率分布。
图3 研究了基合金和O0.2、B0.2、O0.3掺杂合金的低温比热容实验数据。
图4 低温下BMGs中γ弛豫的研究。
图5 基合金和O掺杂合金的局部原子堆积和剪切响应的MD模拟。
图6 增强BMGs结构异质性的两种方法示意图。
综上所述,目前的研究结果表明了如何通过不同的设计概念成功地克服BMGs的室温脆性。这是通过形成塑料顺应区,形成周围的密集填充团簇包含间隙掺杂剂。在这种方法中,小的间隙原子被称为“簇形成者”,因为它们体积小,热力学上的考虑,以及它们部分的共价键贡献。由此产生的结构不均一性的增加被证明是大幅度提高BMGs塑性的有效方法,在没有损失的情况下,而是在强度上增加。因此,适当掺杂氧、硼、碳、氮等NMEs,可以同时提高塑性、强度、热稳定性,甚至增强GFA。这种组合在玻璃成型、可塑性、强度和成本之间取得了良好的平衡,为符合塑料和耐损伤的BMGs开辟了全新的合成、加工和应用范围。
免责声明:本网站所转载的文字、图片与视频资料版权归原创作者所有,如果涉及侵权,请第一时间联系本网删除。
相关文章
官方微信
《中国腐蚀与防护网电子期刊》征订启事
- 投稿联系:编辑部
- 电话:010-62316606-806
- 邮箱:fsfhzy666@163.com
- 中国腐蚀与防护网官方QQ群:140808414
点击排行
PPT新闻
“海洋金属”——钛合金在舰船的
点击数:7297
腐蚀与“海上丝绸之路”
点击数:5873